Twitter Sentiment Analysis on Credit Card

Authors

  • Syahdatul Maulida Tazkia Islamic University
  • Aam Slamet Rusydiana SMART Insight

DOI:

https://doi.org/10.58968/msr.v1i1.259

Keywords:

Credit Card, Sentiment Analysis, Twitter, Shariah

Abstract

This research aims to evaluate the public's response to the global development of credit cards using primary data from Twitter tweets between January 1, 2019, and March 28, 2023. The research method employed is a qualitative approach using Python Library software called VADER (Valence Aware Dictionary and Sentiment Reasoner) to classify sentiments in these tweets. The research results indicate that the majority of the public has a neutral sentiment, accounting for approximately 97.6% towards credit cards, while positive sentiment reaches 1.7%, and negative sentiment is approximately 0.7%. Some keywords frequently appearing in the tweets include credit card, card needed, ASTRA Coins, card debt, and mobile users. It is expected that this research on public sentiment can assist relevant stakeholders in taking appropriate steps to enhance credit card usage and increase awareness and support for it. We also analyze the shariah perspective on credit card.

References

Antonio, M. S. (1999). Bank Syariah Wacana Ulama dan Cendekiawan. Tazkia Institute.

Azzahro, S. F. (2022). Takaful: Pros, Cons, and Sentiment Analysis. Islamic Social Finance, 2(1).

Brito, D. L., & Hartley, P. R. (1995). Consumer Rationality and Credit Cards. Journal of Political Economy, 103(2), 400–433. https://doi.org/10.1086/261988

Btoush, E. A. L. M., Zhou, X., Gururajan, R., Chan, K. C., Genrich, R., & Sankaran, P. (2023). A systematic review of literature on credit card cyber fraud detection using machine and deep learning. PeerJ Computer Science, 9, 1–66. https://doi.org/10.7717/PEERJ-CS.1278

Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2), 15–21.

Cargill, T. F., & Wendel, J. (1996). Bank credit cards: Consumer irrationality versus market forces. Journal of Consumer Affairs, 30(2), 373–389. https://doi.org/10.1111/j.1745- 6606.1996.tb00063.x

Chakravorti, S. (2003). Theory of Credit Card Networks: A Survey of the Literature. Review of Network Economics, 2(2), 50–68. https://doi.org/10.2202/1446-9022.1018

Chen, F., Yu, D., & Sun, Z. (2023). Investigating the associations of consumer financial knowledge and financial behaviors of credit card use. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2022.e12713

Duca, J. V., & Whitesell, W. C. (1991). Credit Cards and Household Denand for Monetary Assets: A Cross- SectionaL Studv. Counselling Psychology Review, 31(1), 67–76. https://doi.org/10.53841/bpscpr.2016.31.1.67

Firmanda, H. (2015). Syari’Ah Card (Kartu Kredit Syariah) Ditinjau Dari Asas Utilitas Dan Maslahah.

Jurnal Ilmu Hukum, 5(2), 186. https://doi.org/10.30652/jih.v4i2.2793

FIS. (2023). The Global Payments Report. https://www.fisglobal.com/-/media/fisglobal/files/campaigns/global-payments-report/FIS_TheGlobalPaymentsReport_2023.pdf

?mkt_tok=OTc1LUJDVS03MDcAAAGL4x9urWP-pmRuBlBSqELJ0iuJsSRd-0MD0sx4v54ZcYIQEakQlJSENlt7zIm- hQe6TGeRsjug2L2ZSHMyLzb1WfivRE4le7yT6Jn477xiwOI

Hancock, A. M., Jorgensen, B. L., & Swanson, M. S. (2013). College Students and Credit Card Use: The Role of Parents, Work Experience, Financial Knowledge, and Credit Card Attitudes. Journal of Family and Economic Issues, 34(4), 369–381. https://doi.org/10.1007/s10834-012-9338-8

Horvath, A., Kay, B., & Wix, C. (2023). The COVID-19 shock and consumer credit: Evidence from credit card data. Journal of Banking and Finance, 152, 106854. https://doi.org/10.1016/j.jbankfin.2023.106854

Howlett, E., Kees, J., & Kemp, E. (2008). The role of self-regulation, future orientation, and financial knowledge in long-term financial decisions. Journal of Consumer Affairs, 42(2), 223–242. https://doi.org/10.1111/j.1745-6606.2008.00106.x

Jiang, C., & Broby, D. (2021). Mitigating Cybersecurity challenges in the Financial Sector with Arti fi cial Intelligence. University of Strathclyde, Glasgow, 2021, 1–15. https://strathprints.strath.ac.uk/75985/1/Jiang_Broby_CeFRI_2021_Mitigating_cybersecurity_challenges_in_the_financial_sector_with_Artificial_Intelligence.pdf

Karakurum-Ozdemir, K., Kokkizil, M., & Uysal, G. (2019). Financial Literacy in Developing Countries. Social Indicators Research, 143(1), 325–353. https://doi.org/10.1007/s11205-018-1952-x

Liu, B. (2012). Sentiment Analysis and Mining of Opinions. Morgan & Claypool Publishers, 30(May), 503–523. https://doi.org/10.1007/978-3-319-60435-0_20

Lusardi, A., & Mitchell, O. S. (2008). Planning and Financial Literacy: How Do Women Fare? NBER Working Paper No. 13750, 413–417. http://www.nber.org/papers/w13750

Mustofa, U. A. (2015). Syariah Card Perspektif Al- Maqasid Syariah. Jurnal Ilmiah Ekonomi Islam, 01(01), 17–28.

Pak, A., Adegboye, O. A., Adekunle, A. I., Rahman, K. M., McBryde, E. S., & Eisen, D. P. (2020).

Economic Consequences of the COVID-19 Outbreak: the Need for Epidemic Preparedness. Frontiers in Public Health, 8(May), 1–4. https://doi.org/10.3389/fpubh.2020.00241

Rai, A. K., & Dwivedi, R. K. (2020). Fraud Detection in Credit Card Data using Unsupervised Machine Learning Based Scheme. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020, Icesc, 421–426. https://doi.org/10.1109/ICESC48915.2020.9155615

Rahayu, S. (2022). Sentiment Analysis on Cash Waqf. Islamic Social Finance, 2(2).

Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. In Knowledge-Based Systems (Vol. 89, Issue June 2015). https://doi.org/10.1016/j.knosys.2015.06.015

Richards, D. W., Rutterford, J., Kodwani, D., & Fenton- O’Creevy, M. (2017). Stock market investors’ use of stop losses and the disposition effect. European Journal of Finance, 23(2), 130–152. https://doi.org/10.1080/1351847X.2015.1048375

Roe, C., Lowe, M., Williams, B., & Miller, C. (2021). Public perception of SARS-CoV-2 vaccinations on social media: Questionnaire and sentiment analysis. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/ijerph182413028

Rusydiana, A. S. (2022). Sentiment Analysis on Islamic Insurance in Indonesia. Islamic Social Finance, 2(1).

Sahil, I. (2020). Penerapan Akad Qardh Pada Kartu Kredit. Mukammil: Jurnal Kajian Keislaman, 3(1), 52– 60.

Tarmizi, E. (2017). Harta haram muamalat kontemporer. BMI (Berkat Mulia Insani) Publishing.

Tubishat, B. M., & Kandah, K. F. (2018). The Credit Card and the Crimes Associated with It. Journal of Politics and Law, 11(2), 16. https://doi.org/10.5539/jpl.v11n2p16

Vargo, C. J., Guo, L., Mccombs, M., & Shaw, D. L. (2014). Network Issue Agendas on Twitter During the 2012 U.S. Presidential Election. Journal of Communication, 64(2), 296–316. https://doi.org/10.1111/jcom.12089

Vinodhini, G., & Chandrasekaran, R. (2012). Sentiment Analysis and Opinion Mining : A Survey International Journal of Advanced Research in Sentiment Analysis and Opinion Mining : A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 2(6), 283–292.

Zaidan, M. Z. Z., Mujtahid, M., & Rusydiana, A. S. (2022). Twitter Public Sentiment on Fintech by Using Drone Emprit. Fara'id and Wealth Management, 2(2).

Zywicki, T. J. (2005). The Economics of Credit Cards. SSRN Electronic Journal, 00. https://doi.org/10.2139/ssrn.229356

Downloads

Published

2022-12-28

How to Cite

Syahdatul Maulida, & Aam Slamet Rusydiana. (2022). Twitter Sentiment Analysis on Credit Card. Maqasid Al-Shariah Review, 1(1). https://doi.org/10.58968/msr.v1i1.259